Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction.

نویسندگان

  • M W Ledbetter
  • J K Preiner
  • C F Louis
  • J R Mickelson
چکیده

The tissue distribution of mRNA for ryanodine receptor (ryr) isoforms in various porcine tissues has been determined using the reverse transcription-polymerase chain reaction (RT-PCR). First strand cDNA was synthesized from total tissue RNA with reverse transcriptase and random hexamer primers. PCR primers were selected to amplify an approximately 500-base pair segment from homologous regions near the 5' end of the skeletal (ryr1), cardiac (ryr2), or brain (ryr3) ryr cDNA sequences. The specific amplification of each of the ryr isoforms was confirmed by restriction enzyme mapping and DNA sequencing. A ryr1 RT-PCR product was identified in skeletal muscle and esophagus, a ryr2 RT-PCR product was identified in cardiac muscle, aorta and esophagus, and a ryr3 RT-PCR product was identified in skeletal and cardiac muscle, aorta, esophagus, adrenal gland, small intestine, and lung. All three ryr isoforms were identified throughout the brain, including the parietal, frontal, and temporal lobes of the cerebrum, thalamus/hypothalamus, cerebellum, and brain stem. The normal (Arg615) and mutant (Cys615) ryr1 alleles were expressed in the brains of normal and malignant hyperthermia susceptible pigs, respectively. These results thus demonstrate expression of two ryr isoforms in each type of striated muscle, and all ryr isoforms in a number of regions of the nervous system. The wide distribution of ryr1 in the brain provides a possible neurogenic etiology of malignant hyperthermia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Nucleic Acid Sequence Based Amplification (NASBA) and Reverse Transcription Polymerase Chain Reaction for Detection of Coxsackievirus B3 in Cell Culture and Animal Tissue Samples

Enteroviruses are the causative agents of a number of diseases in humans. Group B coxsackieviruses are believed to be the most common viral agents responsible for human heart disease. Genomic data of enteroviruses has allowed developing new molecular approaches such as Nucleic Acid Sequence Based Amplification (NASBA) for detection of such viruses. In this study, coxsackievirus B3 (CVB3) was de...

متن کامل

Development of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses

Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...

متن کامل

Biochemical characterization and molecular cloning of cardiac triadin.

Triadin is an intrinsic membrane protein first identified in the skeletal muscle junctional sarcoplasmic reticulum and is considered to play an important role in excitation-contraction coupling. Using polyclonal antibodies to skeletal muscle triadin, we have identified and characterized three isoforms in rabbit cardiac muscle. The cDNAs encoding these three isoforms of triadin have been isolate...

متن کامل

Ryanodine receptor expression in the kidney and a non-excitable kidney epithelial cell.

An oligonucleotide probe to a conserved 3' region within the three identified ryanodine receptor-calcium release channel isoforms hybridized to a single clone from a rabbit kidney cDNA library. The kidney clone encoded the carboxyl-terminal 338 amino acids within the putative transmembrane domain of the type 2 ryanodine receptor sequence. Reverse transcriptase-polymerase chain reaction with iso...

متن کامل

Intracellular Ca Handling in Vascular Smooth Muscle Cells Is Affected by Proliferation

Despite intensive interest in the dedifferentiation process of vascular smooth muscle cells, very little data are available on intracellular Ca signaling. The present study was designed to investigate the evolution of the intracellular Ca pools when rat aortic smooth muscle cells (RASMCs) proliferate and to define the mechanisms involved in the functional alterations. RASMCs were cultured in di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 50  شماره 

صفحات  -

تاریخ انتشار 1994